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ENERGY VARIANT OF THE UNIAXIAL THEORY OF CREEP AND RUPTURE STRENGTH 

V. P. Radchenko ~ UDC 539.376 

All of the procedural recommendations contained in [i] which pertain to the third 
stage of creep are based either on strain-hardening theory or on flow theory, and they all 
have several shortcomings. One deficiency is the impossibility of describing reverse creep 
during unloading. Ignoring the latter in calculations will lead to errors in finding the 
time to rupture, particularly under transient and cyclic loads. Another unresolved problem 
is formulating the governing rheological equations, which make it possible to describe 
creep beyond the elastic limit. There is also the question of the selection of a fracture 
criterion that could be used to describe the following experimentally observed facts: the 
nonmonotonic character of the limiting inelastic strain during fracture; the nonlinear 
character of rupture-strength curves; the presence of a stage of "avalanche" creep. Thus, 
in the present study, we want to develop a creep theory and fracture criterion for metals 

that will allow us to solve the problems just mentioned. 
I. We used the method of strain separation as the basis for construction of the cor- 

responding rheological equations. This method has been proposed for the first and second 
stages of creep [2]. To decribe the third stage, it is customary to adopt a hypothesis in 
which the damage process is directly connected with the cumulative inelastic strain and the 

running stress. One characteristic of the state of the material is the damage parameter, 
which is linked with the relative reduction in the cross-sectional area of the specimen and 
the consequent increase in the true stress due to microscopic fracture of the material dur- 

ing deformation [3-9]. 
In the present study, we further develop the energy approach proposed in [I0-12] to 

describe the stage of softening of the material. In accordance with this approach, the 
damage parameter is assumed to be proportional to the linear combination of the amounts of 
work done by the true stress on creep strain and on plastic deformation. The main form of 

the governing equations is as follows 

e =  e +  e p +  p, e =  ~/E, e p =  • p =  u +  v +  w, 

h = l  

v (t) = vk (t), ~h (t) = 

h=l LO, b h (a ( t ) / a , )  n < v~ (t); 

$ (t) = c (o (t)/~,)'~: ( i. I ) 

= ~0(i -k ~); ( I. 2 ) 

~= ?~P q- aap, (1.3) 

where ~ is the total strain; e and e p are the elastic and plastic strain; p is the creep 
strain; u, v, and w are the viscoelastic, viscoplastic, and viscous components of p; a 0 

and a are the nominal and true stresses; E is the Young's modulus; Ak, ak' bk, c, n, m, a, 
are rheological constants of the material which can be used to describe the first and 
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TABLE i 

0"+, E.t0--5, 
T, ~C MPa MPa g h v,, MPa'i A~ 'MJ/m 3,,r, , m, Material 

El 698 
EP 693 

OT 

750 

750 

500 

480,7 

716,3 

176,6 

i,47 

i,29 

0,68 

5,72. lO -G 

3, 26. lO-~ 

2,35. lO -G 

2,145 

2,242 

2,61 

6,93. t0 -s 

4,53. iO -s 

3,24. t0-~ 

201,2 

96,6 

38,94 

second stages and their irreversible parts; 7 and ~ are material parameters which govern 

its softening. The value of ~ = 1 at a(t) > a(r) (0 ~ r < t) and ~ = 0 if it becomes 
possible to indicate the moment when a(t) ~ a(t). 

A detailed analysis of the experimental data shows that in the general case 7 = 

7(eP), ~ = e(a0), and we can express these functions through power approximations of the 
form 

= ~ (e~)~,  ~ = ~ ( % ) ~ -  (z.4) 

For a number of materials, 7 = const and ~ = const in special cases. 

2. The time to rupture is usually evaluated using fracture criteria based on strain 
[5, 7, 13], energy (dissipation) [6, 13, 14], or thermodynamics [15-19] or criteria 
connected with attainment of a certain critical value by the damage parameters (or 
functions of these parameters) [8, 20-22]. We will give preference to energy-based 

fracture criteria, since they permit description of the nonmonotonic character of inelastic 
strain without particular complication [7, 22-24] while proving very convenient (due to the 
additivity of different forms of energy) [25]. 

To predict time to rupture t = t,, we propose the following relation as a criterion 

t ,  t ,  

f + S (2.1) 
0 0 

where A. p = A.P(T) and A. c = A.C(T) a re  the  c r i t i c a l  v a l u e s  o f  the  amounts o f  work  done by 
the  t r u e  s t r e s s  on i n s t a n t a n e o u s  p l a s t i c  s t r a i n  and on c reep  s t r a i n .  For  a f i x e d  tempera -  
t u r e ,  t h e s e  q u a n t i t i e s  a re  m a t e r i a l  c o n s t a n t s .  We w i l l  show t h a t  ( 2 . 1 )  can a l s o  be 
o b t a i n e d  f rom the rmodynamic  c o n s i d e r a t i o n s  on the  b a s i s  o f  the  app roach  p r o p o s e d  i n  [15,  
16 ] .  I n  a c c o r d a n c e  w i t h  t h i s  a p p r o a c h ,  f r a c t u r e  o f  the  m a t e r i a l  o c c u r s  when the  i n t e r n a l  
energy density reaches a critical value. Theoretical and experimental studies conducted in 

[26] suggest that the critical energy density is independent of the loading process and is 
a material constant. 

The internal energy u+ accumulated in an element of a body being deformed is deter- 
mined as the sum of two components. Part of this energy is due to the accumulation of the 

potential (stored, latent) energy u e in the volumes of the material being deformed (this 
energy being related to the formation of various defects and serving as a quantitative 

characteristic of the damage to the material during deformation), while another part is 

accumulated in the form of heat content u T. This leads to weakening of the interatomic 

bonds and, as a result, a physical weakening of the material. Thus, proceeding on the 
basis of the energy superposition principle [25], we have 

u+ = ~ +  ~T. ( 2 . 2 )  

In accordance with the above, the fracture criterion takes the form 

u + ( t , ) = % §  l ( t , )=  u,, (2 .3)  

w h e r e  u o = u o ( T  ) i s  t h e  i n i t i a l  v a l u e  o f  s p e c i f i c  i n t e r n a l  e n e r g y ;  u 1 i s  t h e  i n c r e m e n t  o f  
internal energy during the time of deformation; u, is a material constant. The increment 
Au = Au I during the time At is made up of two components: 
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A~z..}. : a u  r -j- A u  T, A u  e = O~e '~ -}- O&p, Z~u T -~. ~,u. [ -}- A u  [ .  ( 2 . 4  

Here, in contrast to the work done [6, 14-19, 26], the increment of potential energy Au e is 
written not for the nominal stress, but for the true stress u; Aul T, Au2 T is the increment 

of heat content during plastic deformation and creep. The subsequent problem consists of 
determining Au T. Even under laboratory conditions, direct measurement of this quantity by 

means of calorimetry is a difficult proposition. It is almost impossible to determine bu T 

by such an approach when evaluating the creep of structural elements under actual service 

conditions. Thus, we need to find other ways of evaluating au T. 
The experimental data in [26] allows us to introduce the following hypothesis: AuiT 

and Au2 T are proportional to uAeP and oAp respectively. We change (2.4) to the form 

A~+ = oA~. 0 + A~,~/~'a~) + oA~ 0 + a~/oa~,) ; 2  s 

U s i n g  t h i s  h y p o t h e s i s  and the  n o t a t i o n  1 + AulT/aAeP = C(eP),  1 + /~uzT/oA p = D(o0) ,  we w r i t e  
(2.5) in the form 

Au+ = C(eP)vAeP q- D(%)crAp. ( 2 . 6 )  

After integrating (2.6), we obtain the below fracture criterion from (2.3) 

j" c (e~),, de,' + j" z, (,,o),, dp = ,~, ~n, (2 .7)  
0 0 

where u'(T) = u, - u0(T). With a fixed temperature in the special case C(e p) = C I = const, 

D(o0) = D I = const, we find from (2.7) that 

j" (~: <,'Ode" + .[ (,,M,: < )  ~,, = ~ 
O 0 

(2.8) 

(A,P = u'(T)/CI, A, c = u'(T)/DI). It can be seen that (2.8) coincides with (2.1). 

Thus, criterion (2.1), (2.8) differs from similar criteria in [6, 14-19, 26] in that 
true stress is introduced both into the constitutive equations and into the fracture crite- 

rion. Another difference is that inelastic strain is represented as the sum of plastic 
strain and creep strain. 

3. Let us examine a method of determining the material constants and the experiment 
needed for this purpose. We use the standard instantaneous stress-strain curve as the ini- 

tial data to construct plasticity function S(o) and find 7 and A. p. Despite the known dif- 
ficulties of obtaining these results for high temperatures, there are sufficiently reliable 
methods for constructing such curves [27, 28]. 

Since p = 0 in the given case of creep and active loading is taking place (6 > 0), 
Eqs. (1.1)-(1.3) take the form 
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(3.1) 

We use the initial section of plastic deformation on the stress-strain curve (where ep 
should not exceed 1-2%) to determine the form of the plasticity function S(a). Then the 
smallness of e p allows us to assume that damage from plastic strain is slight and that a = 
a 0. For example, the initial section can be approximated by the power relation 

ep = g(o _ o+)h. (3.2) 

Here, a+ is the proportional limit; g and h are constants that can be determined by the 
least squares method. 

It is easy to use the second and third relations of (3.1) and (3.2) to obtain an ex- 
pression linking the true a and nominal a 0 stresses and the plastic strain function e p = 

�9 (a0) in implicit form: 
eP 

= ~0 0x~ (~, (~) ~0), v, (~)= ~[ ~ (~) ~p; (3.3) 
0 

(3.4) 

We solve (3.4) for ? . ( e P ) :  

(3.5) 

We calculate the parameter ?,(ep) by means of (3.5) and several experimental points on the 

instantaneous stress-strain curve (a0, eP), including points on the section corresponding to 
unstable deformation. Then using the first approximation of (1.4), we find the constants 

71 and m 2. With p = O, we find from (2.1) and (3.3) that 

e, p 

A~ = S 6 de t~, 
0 

where e, p is the plastic strain corresponding to fracture of the specimen. 
The initial data for finding the parameters of Eqs. (1.1)-(1.3) are steady-state 

creep curves continued to fracture for several nominal stresses a 0 lower than the propor- 

tional limit. 
Let us present an algorithm for calculating the parameters which describe creep. 
A. Separating the first and second stages of creep graphically or using more 

accurate and reliable methods [29, 30], we employ the procedure in [31, 32] to find the 
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parameters Ik, ak, bk, c, n, m, o.. 
B. The quantity ~ = ~1(a0)ml and the constant A. c are found from experimental data on 

steady creep with fixed a 0 by minimizing the functional 

fV 

~] [(tj -- t~)/t~]2 --~ rain, (3.6) 
j=l 

where tj and tj *, respectively, are theoretical and experimental values of time correspond- 

ing to the same strain; N is the number of points used in minimization (3.6). For this 

purpose, we vary ~ and we perform calculations with (1.1)-(1.3) until we attain the experi- 
mental value of inelastic strain corresponding to the moment of fracture t = t,. We then 

choose the value of ~ for which condition (3.7) is satisfied. The value of A, c is determ- 
ined from Eq. (2.1): 

A c = ,  ' 1 - -  OJ/AP,)deP "~Jdp. 
o 

C. After we find ~ and A, c for several values of o0, we construct the approximation 
= ~1(o0)ml (the variant ~ = const is possible in a special case) and we average A, c. 

4. To check the proposed model (1.1)-(1.4) and criterion (5.1), we conducted a 

series of tests of alloy EI698 at T = 700, 750, and 775~ alloy EP693 at T = 700, 725, and 

750~ and alloy EP742 at T = 650 and 750~ As an example, Fig. 1 shows the result of 
calculation of the elastoplastic stress-strain curve of alloy EI698 at T = 750~ the 

solid line shows the experimental data, the dashed line shows the result calculated from 

model (1.1)-(1.4) in the coordinates a-a0, and the dot-dash line shows the result in the 
coordinates ~--a. Table 1 shows the material constants used to calculate elastoplastic 

strain for all of the materials studied here. It can be seen from Fig. 1 that the 

theoretical a-a 0 curve is nonmonotonic, with a maximum which corresponds to the theoretical 
ultimate strength. The curve in the true stresses a-~ is strictly monotonic. One of the 
important results obtained here is a theoretical description of the nonmonotonic character 
of the instantaneous stress-strain curve. As is known [23, 33], it is in this regard that 
the greatest difficulties are encountered in the approximation. 

The dashed lines in Fig. 2 show the result of calculation of the steady creep of 
alloy Ei698 at T = 750~ The solid lines show experimental data, while the numbers show 

the stress (in MPa). The rheological constants for this alloy are shown in Table 2. 

Figure 3 presents an example of the calculation (dashed line) for alloy EP693 at T = 725~ 

under nonsteady loading. The solid lines show experimental data, while the numbers show 

the stress (MPa). The material constants are shown in Tables 1 and 2. 
Analysis of the theoretical and experimental data showed that reversible creep strain 

during the third stage is considerably greater than on the initial section. Thus, for the 
upper realization in Fig. 3, this strain is 3.65 and 5.6 times greater, respectively, for 
the last unloading stage when determined experimentally and theoretically~ The correspond- 
ing figures for the lower realization are 3.0 and 2.81. This shows that unloading occurs 
at the true stress a rather than a 0 and indicates that the former increases during 
deformation. 
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TABLE 3 

Q , %  

- -  t 7 , r  t 2 , 9  9,5 

Go . * $ . 

~i ~2 t3 t4 

h 

98,i 
tt2,8 
i27,5 
t47,i 
176,6 

444 
211 
14t 
65 
38 

445 
265 
155 
7 8 .  
26 

356 
2t6 
t39 
83 
43 

455,8 
240,t 
i37,7 
70,3 
30,i 

We used the data in [34] to compare the proposed model (i.I)-(1.4), (2.1) with 
existing theories. The data in [34] was obtained from creep tests of titanium alloy 
OT-4 at T = 500~ The missing parameters for calculating elastoplastic strain were 
determined from the experimental data in [33], which presented curves of this alloy for T = 
20, i00, 200, 300, and 400~ After these results were analyzed by the method we have 
proposed, we extrapolated the data for T = 500~ Tables i and 2 show the constants of 
model (1.1)-(1.4), (2.1) for alloy OT-4 at T = 500~ The solid lines in Fig. 4 show 
experimental data obtained for this alloy by different authors. The dot-dash lines show 
the results calculated from the energy variant [6, 14], while the dashed lines show the 
results calculated with our model. Table 3 shows values of time to rupture calculated by 
different authors for this alloy. Here, t1* are the experimental results from [34], t2* are 
the results calculated in [6, 14] on the basis of an energy criterion, t3* are the results 
calculated in [7] using a strain criterion, and t4* are the results calculated using model 

5 
t ' t* t* (i.I)-(1.4), (2.1). Table 3 also shows the mean relative error Qizy~l(li-tu)/~jI(~=2,3,4) 

of the deviation of the theoretical values of time to rupture from the experimental data 
for each criterion. It is evident that, on the whole, Eqs. (I.I)-(1.4) approximate the 
experimental results somewhat better than do the equations from [6, 14], while criterion 

(2.1) is more accurate than the criteria in [6, 7, 14]. 
The solid lines in Fig. 5 show typical theoretical rupture-strength curves obtained 

in accordance with criterion (2.1) for alloy E1698. The points show averaged data, while 
the numbers represent temperatures. It can be seen that the curves are of a distinctly 
nonlinear character and have a point of inflection. Here, we can tentatively distinguish a 
straight section and two adjacent sections, three regions characterized by different frac- 

ture mechanisms. 
Lines i and 2 in Fig. 6 show theoretical relations for the limiting elastic strain a* = 

a*(a0) for alloy EP742 at T = 750~ It is evident that governing equations (i.i)-(1.4) and 
criterion (2.1) describe the nonmonotonic character of a* = a*(o 0) with either one or two 
local extrema. The authors of [6, 8, 22, 23] either described only monotonic relations a* = 

a*(a0) or nonmonotonic relations with one local extremum. 
We should point out the following interesting fact. Although the stress o 0 may not 

exceed the proportional limit, damage accumulation over time causes the true stress o to 
become higher than this limit, and instantaneous plastic strain will be superimposed on the 
creep strain. This event corresponds to the so-called fourth ("avalanche") stage of creep 
discussed in [35, 36]. The manifestation of this stage was mentioned in [37] from the 

viewpoint of the mechanics of microscopically nonuniform media. The arrows in Figs. 2-4 
indicate the beginning of the avalanche stage of creep, although a 0 < a+ in every case. In 
contrast to [27], where the technique of determining the beginning of this stage was used 
only for steady creep curves, the beginning of the avalanche stage can be determined on the 
basis of model (1.1)-(1.4), (2.1) for any law of stress change. Using this approach also 
substantiates the physical state of the material at the onset of avalanche creep. 

Separation of inelastic rheological strain into plastic strain and creep Strain makes 
it possible to avoid the typical problem of other theories (in which no such distinction is 
made) which is connected with the need to introduce the hypothesis of a "jump" in internal 
energy with the transition through a certain value of o 0 [38]. In fact, there is simply a 
change in the fracture mechanism, and the first term in (2.1) begins to play an important 

role. 
Thus, proposed model (1.1)-(1.4) and fracture criterion (2.1) make it possible to de- 

scribe several facts which pose great difficulties from a phenomenological viewpoint. 

638 



LITERATURE CITED 

i. Strength Calculations and Tests. Theoretical Methods of Determining the Load- 
Carrying Capacity and Life of Machine Elements and Structures. Method of Determining 
the Parameters of Creep and Stress-Rupture Curves for Uniaxial Loading. Procedural 
Recommendations, VNIINMASh, Moscow (1982). 

2. Yu. P. Samarin, "Generalization of the method of differentiating strain in creep 
theory," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1971). 

3. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966). 
4. L.M. Kachanov, "Time to rupture under creep conditions," Izv. Akad. Nauk SSSR, Otd. 

Tekh. Nauk, No. 8 (1958). 
5. G.F. Lepin, Creep of Metals and Creep-Resistance Criteria [in Russian], Metal- 

lurgiya, Moscow (1976). 
6. O.V. Sosnin, "Energy variant of the theory of creep and rupture strength," Probl. 

Prochn., No. 5 (1973). 
7. A.M. Lokoshchenko and S. A. Shesterikov, "Method of describing creep and rupture 

strength in pure tension," Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1980). 
8. V.I. Astaf'ev, "Damage and fracture criteria in creep," Probl. Prochn., No. 3 

(1983). 
9. V.N. Kisilevskii, "Variant of kinetic creep equation," Probl. Prochn., No. I (1982). 
I0. V.P. Radchenko, Yu. P. Samarin, and S. M. Khrenov, "Governing equations for materi- 

als in the presence of three stages of creep," Dokl. Akad. Nauk SSSR, 28__~8, No 3. 
ii. Y.P. Samarin and V. P. Radchenko, "Model describing deformation and destruction of 

metals while stretching them under creepage," Proc. 9th Congress on Material Testing, 
Budapest, Vol. I (1986). 

12. Yu. P. Samarin and V. P. Radchenko, "Governing equations for describing the creep and 
fracture of metals during cyclic creep," Fifth All-Union Symposium. Summary of Docu- 
ments and Reports. Volgograd, Part 2 (1987). 

13. S.A. Shesterikov (editor), Laws of Creep and Rupture Strength: Handbook, Mashino- 
stroenie, Moscow (1983). 

14. O.V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of Creep Theory [in 
Russian], IG SO AN SSSR, Novosibirsk (1986). 

15. V.V. Fedorov, "Thermodynamic representations on the strength and fracture of 
solids," Probl. Prochn., No. ii (1971). 

16. V.V. Fedorov, "Thermodynamic method of estimating rupture strengths" ibid., No. 9 
(1972). 

17. D.A. Kiyalbaev and A. I. Chudnovskii, "Fracture of deformable bodies," Zh. Prikl. 
Mekh. Tekh. Fiz., No. 3 (1970). 

18. A.I. Chudnovskii, "Certain aspects of the fracture of deformable solids," Izv. Akad. 
Nauk SSSR, Mekh. Tverd. Teia, No. 5 (1969). 

19. V. I. Astaf'ev, "Entropy criterion of fracture during creep (growth of ductile 
cracks)," in: Strength and Reliability of Structures [in Russian], KuAI, Kuibyshev 
(1981). 

20. A.M. Lokoshchenko and S. A. Shesterikov, "Problem of evaluating rupture strength 
during stepped loading," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1982). 

21. A.M. Lokoshchenko and I. V. Namestnikova, "Description of rupture strength for 
stepped loading," Probl. Prochn., No. i (1983). 

22. A.M. Lokoshchenko and S. A. Shesterikov, "Model of rupture strength with a nonmono- 
tonic stress dependence of strain during fracture," Zh. Prikl. Mekh. Tekh. Fiz., No. 
i (1982). 

23. M.D. Dacheva, A. M. Lokoshchenko, and S. A. Shesterikov, "Model representation of 
limiting deformation during creep," ibid., No. 4 (1984). 

24. V.I. Kovpak, "Methods of predicting the rupture strength and creep of metallic mate- 
rials for long service lives," Author's Abstract of Engineering Sciences Doctoral 
Dissertation, Kiev (1979). 

25. M. Planck, Principles of the Conservation of Energy [Russian translation], GONTI, 
Moscow-Leningrad (1938). 

26. V.V. Fedorov, Kinetics of the Damage and Fracture of Solids [in Russian], Fan, 
Tashkent (1985). 

27. N. N. Malinin, Applied Theory of Ductility and Creep [in Russian], Mashinostroenie, 
Moscow (1975). 

639 



28. Yu. N. Rabotnov and S. T. Mileiko, Transient Creep [in Russian], Nauka, Moscow 
(1970). 

29. V.I. Kovpak, "Reliable determination of the beginning of the accelerated stage of 
creep," Probl. Prochn., No. 12 (1973). 

30. L.G. Mukhina, "Calculation of creep characteristics from experimental data using the 
method of nonparametric equalization," in: Theoretical-Experimental Method of Study- 
ing Creep in Structures [in Russian], KPtl, Kuibyshev (1984). 

31. Yu. P. Samarin, Constitutive Equations of Materials with Complex Rheological Proper- 
ties [in Russian], KGU, Kuibyshev (1979). 

32. Theoretical and Theoretical-Empirical Methods of Determining the Load-Carrying 
Capacity and Life of Machine Elements and Structures. Theoretical-Experimental 
Method of Determining Creep and Rupture-Strength Parameters for Nonsteady Uniaxial 
Loading (Ist ed.), Gosstandart, Moscow (1982). 

33. O.V. Sosnin and O. O. Sosnin, "On thermoplasticity," Probl. Prochn., No. 12 (1988). 
34. O.V. Sosnin and N. G. Torshenov, "Creep and fracture of titanium alloy OT-4 at a 

constant temperature," Probl. Prochn., No. 5 (1970). 
35. M.V. Baumshtein and A. I. Badaev, "Determining the avalanche region of creep," 

Probl. Prochn., No. 5 (1980). 
36. V.V. Osasyuk, "Predicting the residual life of structural elements of power-plant 

equipment after long use," Author's Abstract of Engineering Doctoral Dissertation, 
Kiev (1987). 

37. V.P. Radchenko and S. V. Kuz'min, "Structural model of damage accumulation and frac- 
ture in metals during creep," Probl. Prochn., No. ii (1989). 

38. V.N. Maklakov, "Connection between strength properties and internal energy density 
during the creep of structures," Creep and Rupture Strength [in Russian], KPtl, 
Kuibyshev (1986). 

640 


